Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774976

RESUMO

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Assuntos
Biotinilação , Esteróis , Proteínas rab de Ligação ao GTP , Humanos , Colesterol/biossíntese , Colesterol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Transporte Proteico/genética
2.
J Biomed Res ; 32(5): 327-335, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28550272

RESUMO

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of metabolic states ranging from simple steatosis to inflammation with associated fibrosis to cirrhosis. Though accumulation of hepatic fat is not associated with a significant increase in mortality rates, hepatic inflammation is, as this augments the risk of terminal liver disease, i.e., cirrhosis, hepatic decompensation (liver failure) and/or hepatocellular carcinoma. Disease progression is usually slow, over a decade or more and, for the most part, remains asymptomatic. Recent estimates suggest that the global prevalence of NAFLD is high, about one in four. In most cases, NAFLD overlaps with overweight, obesity, cardiovascular disease and the metabolic syndrome with numerous contributing parameters including a dysregulation of adipose tissue, insulin resistance, type 2 diabetes, changes in the gut microbiome, neuronal and hormonal dysregulation and metabolic stress. NAFLD is diagnosed incidentally, despite its high prevalence. Non-invasive imaging techniques have emerged, making it possible to determine degree of steatosis as well asfibrosis. Despite this, the benefit of routine diagnostics remains uncertain. A better understanding of the (molecular) pathogenesis of NAFLD is needed combined with long-term studies where benefits of treatment can be assessed to determine cost-benefit ratios. This review summarizes the current state of knowledge and possible areas of treatment.

3.
Front Cell Dev Biol ; 4: 48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252941

RESUMO

Small GTPases of the Rab superfamily participate in virtually all vesicle-mediated trafficking events. Cycling between an active GTP-bound form and an inactive GDP-bound form is accomplished in conjunction with guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), respectively. Rab cascades have been described in which an effector of an activated Rab is a GEF for a downstream Rab, thus ensuring activation of a pathway in an ordered fashion. Much less is known concerning crosstalk between GEFs and GAPs although regulation between these factors could also contribute to the overall physiology of a cell. Here we demonstrate that a subunit of the TRAPP II multisubunit tethering factor, a Rab GEF, participates in the recruitment of Gyp6p, a GAP for the GTPase Ypt6p, to Golgi membranes. The extreme carboxy-terminal portion of the TRAPP II subunit Trs130p is required for the interaction between TRAPP II and Gyp6p. We further demonstrate that TRAPP II mutants, but not a TRAPP III mutant, display a defect in Gyp6p interaction. A consequence of this defective interaction is the enhanced localization of Ypt6p at late Golgi membranes. Although a ypt31/32 mutant also resulted in an enhanced localization of Gyp6p at the late Golgi, the effect was not as dramatic as that seen for TRAPP II mutants, nor was Ypt31/32 detected in the same TRAPP II purification that detected Gyp6p. We propose that the interaction between TRAPP II and Gyp6p represents a parallel mechanism in addition to that mediated by Ypt31/32 for the recruitment of a GAP to the appropriate membrane, and is a novel example of crosstalk between a Rab GAP and GEF.

4.
Open Biol ; 5(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26311421

RESUMO

Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body. By electron microscope gold antibody labelling, the Golgi trafficking protein TMED7/p27 localized to unstacked flattened cisternae of the Hermes body, as did GLUT-3, the most abundant protein. Its biogenesis was deduced through the mapping of protein expression for all 43 proteins during male germ cell differentiation in the testis. It is at the terminal step 19 of spermiogenesis that the 43 characteristic proteins accumulated in the nascent Hermes body.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Epididimo/metabolismo , Glucose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatozoides/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Transporte Biológico , Movimento Celular , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Glicólise , Complexo de Golgi/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Transporte Proteico , Ratos , Proteínas Ribossômicas/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo
5.
Mol Biol Cell ; 26(22): 4015-32, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25808494

RESUMO

The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell-specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.


Assuntos
Complexo de Golgi/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Acrossomo/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Espermátides/metabolismo , Espermatogênese
6.
J Proteome Res ; 14(2): 1033-59, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25536015

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa. Two main forms are found in the Old World, self-limited cutaneous leishmaniasis and potentially fatal visceral leishmaniasis, with parasite dissemination to liver, bone marrow, and spleen. The Leishmania donovani species complex is the causative agent of visceral leishmaniasis worldwide, but atypical L. donovani strains can cause cutaneous leishmaniasis. We hypothesized that L. donovani can adapt to survive in response to restrictions imposed by the host environment. To assess this, we performed in vivo selection in BALB/c mice with a cutaneous L. donovani clinical isolate to select for parasites with increased capacity to survive in visceral organs. We then performed whole cell proteomic analysis and compared this visceral-selected strain to the original cutaneous clinical isolate and to a visceral leishmaniasis clinical isolate. Overall, there were no major shifts in proteomic profiles; however, translation, biosynthetic processes, antioxidant protection, and signaling were elevated in visceral strains. Conversely, transport and trafficking were elevated in the cutaneous strain. Overall, these results provide new insight into the adaptability of Leishmania parasites to the host environment and on the factors that mediate their ability to survive in different organs.


Assuntos
Adaptação Fisiológica , Leishmania donovani/fisiologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/psicologia , Proteoma , Proteínas de Protozoários/metabolismo , Animais , Leishmania donovani/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
7.
BMC Med Ethics ; 15: 88, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25539799

RESUMO

BACKGROUND: This article outlines procedures for the feedback of individual research data to participants. This feedback framework was developed in the context of a personalized medicine research project in Canada. Researchers in this domain have an ethical obligation to return individual research results and/or material incidental findings that are clinically significant, valid and actionable to participants. Communication of individual research data must proceed in an ethical and efficient manner. Feedback involves three procedural steps: assessing the health relevance of a finding, re-identifying the affected participant, and communicating the finding. Re-identification requires researchers to break the code in place to protect participant identities. Coding systems replace personal identifiers with a numerical code. Double coding systems provide added privacy protection by separating research data from personal identifying data with a third "linkage" database. A trusted and independent intermediary, the "keyholder", controls access to this linkage database. DISCUSSION: Procedural guidelines for the return of individual research results and incidental findings are lacking. This article outlines a procedural framework for the three steps of feedback: assessment, re-identification, and communication. This framework clarifies the roles of the researcher, Research Ethics Board, and keyholder in the process. The framework also addresses challenges posed by coding systems. Breaking the code involves privacy risks and should only be carried out in clearly defined circumstances. Where a double coding system is used, the keyholder plays an important role in balancing the benefits of individual feedback with the privacy risks of re-identification. Feedback policies should explicitly outline procedures for the assessment of findings, and the re-identification and contact of participants. The responsibilities of researchers, the Research Ethics Board, and the keyholder must be clearly defined. We provide general guidelines for keyholders involved in feedback. We also recommend that Research Ethics Boards should not be directly involved in the assessment of individual findings. Hospitals should instead establish formal, interdisciplinary clinical advisory committees to help researchers determine whether or not an uncertain finding should be returned.


Assuntos
Pesquisa Biomédica , Dever de Recontatar , Achados Incidentais , Obrigações Morais , Privacidade , Pesquisadores/ética , Sujeitos da Pesquisa , Pesquisa Biomédica/ética , Canadá , Dever de Recontatar/ética , Comitês de Ética em Pesquisa , Ética em Pesquisa , Guias como Assunto , Humanos , Medicina de Precisão , Revelação da Verdade/ética
8.
PLoS One ; 9(11): e111309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25397679

RESUMO

The ARF GTPase Activating Protein 1 (ARFGAP1) associates mainly with the cytosolic side of Golgi cisternal membranes where it participates in the formation of both COPI and clathrin-coated vesicles. In this study, we show that ARFGAP1 associates transiently with lipid droplets upon addition of oleate in cultured cells. Also, that addition of cyclic AMP shifts ARFGAP1 from lipid droplets to the Golgi apparatus and that overexpression and knockdown of ARFGAP1 affect lipid droplet formation. Examination of human liver tissue reveals that ARFGAP1 is found associated with lipid droplets at steady state in some but not all hepatocytes.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Técnicas de Silenciamento de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Hepatócitos/ultraestrutura , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácido Oleico/farmacologia , Perilipina-3 , Transporte Proteico/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo
9.
Proteomics ; 14(21-22): 2558-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25081070

RESUMO

Colorectal cancer risk is increased when dietary folate intake is low, with or without a deficiency in methylenetetrahydrofolate reductase (MTHFR). We have observed that intestinal tumors are induced in mice fed low-folate diets, and that tumor incidence is increased when these mice also have MTHFR deficiency. This study was undertaken to identify differentially expressed proteins in conditions favoring initial steps of murine carcinogenesis in normal preneoplastic intestine. We compared the proteome of BALB/c normal intestine in Mthfr(+/+) mice fed control diets for 1 year (low susceptibility to tumorigenesis) with the proteome of Mthfr(+/-) animals fed low folate diets (higher tumor susceptibility). Our data suggest that the NuRD complex, KRAS-related proteins, the protein synthetic machinery, and fatty acid-related metabolic proteins are upregulated in the early stages of tumorigenesis. These proteins may serve as biomarkers or targets for colorectal cancer diagnosis or therapy.


Assuntos
Carcinogênese/metabolismo , Ácido Fólico/metabolismo , Homocistinúria/complicações , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/metabolismo , Intestinos/patologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/complicações , Proteoma/metabolismo , Animais , Carcinogênese/patologia , Dieta , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/patologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Transtornos Psicóticos/complicações
10.
J Biomed Res ; 28(3): 169-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25013400

RESUMO

Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barring surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now overlooked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.

11.
Cold Spring Harb Perspect Biol ; 5(1): a015073, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23284051

RESUMO

Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.


Assuntos
Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Animais , Calnexina/metabolismo , Biologia Celular , Separação Celular , Análise por Conglomerados , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transporte Proteico , Proteômica/métodos , Ratos , Espectrometria de Massas em Tandem
12.
Artigo em Inglês | MEDLINE | ID: mdl-21813401

RESUMO

Despite more than six decades of successful Golgi research, the fundamental question as to how biosynthetic material is transported through the secretory pathway remains unanswered. New technologies such as live cell imaging and correlative microscopy have highlighted the plastic nature of the Golgi, one that is sensitive to perturbation yet highly efficient in regaining both structure and function. Single molecule-microscopy and super resolution-microscopy further adds to this picture. Various models for protein transport have been put forward, each with its own merits and pitfalls but we are far from resolving whether one is more correct than the other. As such, our laboratory considers multiple mechanisms of Golgi transport until proven otherwise. This includes the two classical modes of transport, vesicular transport and cisternal progression/maturation as well as more recent models such as tubular inter- and intra-cisternal connections (long lasting or transient) and inter-Golgi stack transport. In this article, we focus on an emerging inductive technology, mass spectrometry-based proteomics that has already enabled insight into the relative composition of compartments and subcompartments of the secretory pathway including mechanistic aspects of protein transport. We note that proteomics, as with any other technology, is not a stand-alone technology but one that works best alongside complementary approaches.


Assuntos
Complexo de Golgi/metabolismo , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Complexo de Golgi/fisiologia , Complexo de Golgi/ultraestrutura , Proteômica/métodos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiologia
13.
Diabetes ; 60(2): 427-35, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21270254

RESUMO

OBJECTIVE: Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS: The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitative real-time PCR. The potential of a direct transcriptional regulation of regulated genes was tested in promoter assays, and mitochondrial morphology was investigated by electron microscopy. Mitochondrial function was tested by measuring oxygen consumption and extracellular acidification rates as well as palmitate oxidation. RESULTS: Enhanced expression of FOXC2 in adipocytes or in cells with no endogenous Foxc2 expression induces mitochondriogenesis and an elongated mitochondrial morphology. Together with increased aerobic metabolic capacity, increased palmitate oxidation, and upregulation of genes encoding respiratory complexes and of brown fat-related genes, Foxc2 also specifically induces mitochondrial fusion genes in adipocytes. Among tested forkhead genes, Foxc2 is unique in its ability to trans-activate the nuclear-encoded mitochondrial transcription factor A (mtTFA/Tfam) gene--a master regulator of mitochondrial biogenesis. In human adipose tissue the expression levels of mtTFA/Tfam and of fusion genes also correlate with that of Foxc2. CONCLUSIONS: We previously showed that a high-calorie diet and insulin induce Foxc2 in adipocytes; the current findings identify a previously unknown role for Foxc2 as an important metabo-regulator of mitochondrial morphology and metabolism.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mitocôndrias/metabolismo , Células 3T3 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Ácidos Graxos/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Insulina/farmacologia , Masculino , Camundongos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleotídeos/farmacologia , Transfecção
14.
Mol Membr Biol ; 27(8): 462-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21142874

RESUMO

Lipid droplets are discrete organelles present in most cell types and organisms including bacteria, yeast, plants, insects and animals. Long considered as passive storage deposits, recent cell biology, proteomic and lipidomic analysis show that lipid droplets are dynamic organelles involved in multiple cellular functions. They have a central function in lipid distribution to different membrane-bound organelles and serve not only as main reservoirs of neutral lipids such as triglycerides and cholesterol but in addition, contain structural proteins, proteins involved in lipid synthesis and transmembrane proteins. A detailed model for how transmembrane proteins such as SNARE proteins can exist in lipid droplets is proposed.


Assuntos
Lipídeos/fisiologia , Proteínas SNARE/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Biogênese de Organelas , Proteínas SNARE/química
15.
J Biol Chem ; 285(47): 36709-20, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20858901

RESUMO

Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Complexo I de Proteína do Envoltório/genética , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Membranas Intracelulares/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismo
16.
Nat Methods ; 7(9): 681-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20805795

RESUMO

Mass spectrometry has evolved and matured to a level where it is able to assess the complexity of the human proteome. We discuss some of the expected challenges ahead and promising strategies for success.


Assuntos
Espectrometria de Massas/tendências , Proteoma/análise , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Trends Cell Biol ; 20(6): 337-45, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20227883

RESUMO

Isolated subcellular fractions have been instrumental in elucidating cell function. The use of such fractions for the identification and biochemical characterization of subcellular organelles, combined with cell- free systems, has provided key insights into the function and machineries of organelles, including those involved in vesicle transport, quality control and protein sorting. Despite their obvious utility, popular cell biology has come to regard in vitro-based approaches as inferior to in vivo-based approaches. Usual criticisms are contamination, non-representative processes and an inability to recreate the dynamic processes seen in vivo. In a similar way, proteomics has been viewed with reservation. Despite this, and building on the tradition of in vitro-based approaches, organelle proteomics based on liquid chromatography and tandem mass-spectrometry has recently made significant contributions to cell biology, and now allows the molecular machineries of organelles to be defined with high precision.


Assuntos
Organelas/química , Organelas/fisiologia , Proteômica/métodos , Animais , Fracionamento Celular , Fenômenos Fisiológicos Celulares , Humanos
18.
FEBS Lett ; 583(23): 3764-9, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19878678

RESUMO

The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of anin vitrotransport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport.


Assuntos
Complexo de Golgi/metabolismo , Animais , Glicosilação , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Humanos , Especificidade por Substrato
19.
Nat Methods ; 6(6): 423-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448641

RESUMO

We performed a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in liquid chromatography-mass spectrometry-based proteomics. We distributed an equimolar test sample, comprising 20 highly purified recombinant human proteins, to 27 laboratories. Each protein contained one or more unique tryptic peptides of 1,250 Da to test for ion selection and sampling in the mass spectrometer. Of the 27 labs, members of only 7 labs initially reported all 20 proteins correctly, and members of only 1 lab reported all tryptic peptides of 1,250 Da. Centralized analysis of the raw data, however, revealed that all 20 proteins and most of the 1,250 Da peptides had been detected in all 27 labs. Our centralized analysis determined missed identifications (false negatives), environmental contamination, database matching and curation of protein identifications as sources of problems. Improved search engines and databases are needed for mass spectrometry-based proteomics.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Proteoma/análise , Proteômica/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Mol Biol Cell ; 20(3): 780-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19037109

RESUMO

We have investigated the role for diacylglycerol (DAG) in membrane bud formation in the Golgi apparatus. Addition of propranolol to specifically inhibit phosphatidate phosphohydrolase (PAP), an enzyme responsible for converting phosphatidic acid into DAG, effectively prevents formation of membrane buds. The effect of PAP inhibition on Golgi membranes is rapid and occurs within 3 min. Removal of the PAP inhibitor then results in a rapid burst of buds, vesicles, and tubules that peaks within 2 min. The inability to form buds in the presence of propranolol does not appear to be correlated with a loss of ARFGAP1 from Golgi membranes, as knockdown of ARFGAP1 by RNA interference has little or no effect on actual bud formation. Rather, knockdown of ARFGAP1 results in an increase in membrane buds and a decrease of vesicles and tubules suggesting it functions in the late stages of scission. How DAG promotes bud formation is discussed.


Assuntos
Diglicerídeos/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...